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Scale-covariant field theories: V. The large-N limit of the 
self-interacting A (q2)2 scalar theory 

J M Ebbutt and R J Rivers 
Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, England 

Received 22 February 1982 

Abstract. In the large-N limit the ultraviolet singularities due to the self-interaction and 
the ‘hard-core’ change of measure are additive. For d > 4  dimensions the hard core is 
the less singular. The theory can be renormalised in the large-N limit for d = 5 dimensions 
when scale covariance is obligatory (and also in d = 4, 3 dimensions). 

1. Introduction 

In a series of innovative papers (Klauder 1979a, b, 1981, and references therein) 
Klauder has argued that conventionally non-renormalisable theories are potentially 
solvable provided we prepare the functional measures for the theory (in the path- 
integral formalism) appropriately. 

Taking the theory of a single scalar field ( A q 4  in d > 4 space-time dimensions, say) 
as an example, the path integrals that we need to evaluate are of the form (Euclidean 
momenta) 

Z’[h] = I W[p] exp -L(A[rp]- I ddx hrp) (1.i)  

where A is the classical action. The measure 9’[rp] differs from the translation-invariant 
measure 9 [p ]  of the canonical theory in excluding certain paths accessible to the free 
scalar theorq. 

In Klauder (1981) it was argued that 3’[47] should be scale covariant. That is, that 

h 

9’[’lrp] = F[ll]9’[cp] for A ( x )  > 0, Vx. 11.2) 

In terms of the canonical translation-invariant measure $3 we can express 9’ formally 
as 

(1.3) 

As has been shown in Klauder (1981), all 9; give rise to the same subtracted 
scale-covariant branching equations that were the starting point of this analysis, and 
which we examined in detail in an earlier paper (Ebbutt and Rivers 1982b, to be 
referred to as 11). Different values of the non-classical degree of freedom p correspond 
to quantising the scale-covariant theory in different ways. 
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3286 J M  Ebbutt and R J Rivers 

Empirically, we can only evaluate Gaussian measures and expansions based upon 
them. It is no surprise that we have great difficulty in evaluating path integrals like (1.1). 

The major problem is to understand how ultraviolet divergences arise in scale- 
covariant theories and the circumstances under which they can be controlled. In the 
previous two papers of this series (Ebbutt and Rivers 1982c, d, to be referred to as 
I11 and IV respectively) we have used the form (1.3) to examine some aspects of the 
pseudo-free scalar theory, for which 

Our main conclusion was that, if the diagrams are organised in a way appropriate to 
mean-field or 1/N expansions (in the sense of first summing the most singular 
contributions) the ‘hard-core’ ultraviolet effects of the change of measure become 
additive? and easier to manage. In particular, to a first approximation, renormalisation 
is possible for d 3 4  dimensions$. A dimension-specific result like this is important 
in that it shows that the scale-covariant theory makes sense just when it is obligatory. 

In this paper we shall use the large-N tactics of I11 and IV to examine the 
scale-covariant self-interacting scalar theory with action 

A[cp]= ddx[$(Vcp)’+&n~cp2+~AOcp4]. (1.5) 

Our aim is to look for equally dimension-dependent results. 
This paper is organised as follows. In the next section we calculate the formal 

large-N behaviour of the scale-covariant O(N)-invariant generalisation of (1.5) with 
action 

where 9 denotes the N-dimensional vector representation of O(N) .  In the three 
sections following, we show how renormalisation can be performed in the large-N 
limit. In particular, we are looking for solutions to the scale-covariant theory for 
d > 4 dimensions (and perhaps for d = 4 dimensions) when the canonical theory fails. 
In the remaining section, before presenting our conclusions, we reconsider the gen- 
eralised measures 9; in the light of these results. 

2. The large-N limit of the O ( N )  A(9’) ’  theory 

When examining the scale-covariant pseudo-free theory with scale-invariant measure 
(1.3) in I11 we argued that the physics was driven by the most ultraviolet singular 
diagrams. The approximation of retaining only the most singular diagrams becomes 
exact in the large-N limit of the O(N)-invariant pseudo-free theory. In consequence, 
renormalisation is possible in this limit for d 4 dimensions, suggesting that the 1 / N  
expansion may provide a tool for renormalisation of scale-covariant theories. 

+ A priori, the scale-invariant formalism puts emphasis on the multiplicative singularities associated with 
the operator-product expansion, which is much less easy to handle. 
$ And not possible for d < 4 dimensions. The case d = 4 is considered in this paper. 
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In this section we shall begin to calculate the large-N limit of the O(N)-invariant 
theory with classical action 

(2.1) A [ q l = j  ddx($@v) 2 + m ~ v  1 2 2  + ~ ( v ’ ) ’ )  A0 

where 4p denotes the N-dimensional vector representation of scalar fields of O ( N ) .  
The explicit N dependence in the bare coupling strength follows from the assumption 
that the significant region of configuration space is q2 = O ( N ) ,  whence each term in 
A is individually O ( N ) .  

The path integral that we wish to evaluate is 

Z ’ [ h ] = [  9‘[q]exp-;(A[p]-I d d x h * q )  (2.2) 

where 9’[q] is both O ( N )  invariant and scale covariant under those scale transforma- 
tions p(x)  + h(x)q(x)  (h(x) > 0, Vx) that preserve O ( N )  invariance. In consequence, 
9’[+9] must have the form? 

N 

= [ fi 9[qi]]  exp -$NpS(O) ddx ln(q2/N) 
1 I 

(2.3) 

(2.4) 

the O(N)-generalisation of (1.3). 

explicit. To do this, we insert in 2’ (in order) the functional identities 
In evaluating Z‘[h] in the large-N limit we need to make the N-dependence 

constant = 9 [ p ]  exp- I ddx(ip -$Ao(p2/N)2 I 2Aoh (2.5) 

and 

constant = 9[(+][S(q2-Na)]= 9 [ ( ~ ] 9 [ a l  exp -‘I ddx a ( s 2 - N o ) .  I I 2h (2.6) 

t In I11 we used the augmented formalism that is only appropriate to p = 1. In IV we saw that the 
generalisation to B # 1 is straightforward. This will be reconsidered in 0 6. 
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where 

(2.10) 
+khN Trln(-V'+m:+ia+ip)+pS(O) 5 l n a ) .  ( 

Each term in (2.10) is O(N) .  In the limit N+m (zl fixed) we assume that the path 
integral Z' [h]  is dominated by a single h-dependent saddle point at (a, a,  p )  = 
( a [ h ] ,  a [ h ] ,  p [ h ] )  satisfying 

- 0. 
8% sa S% 
Sa Sa sp 

- -  (2.111 

It follows that with this dominance 

~ ' [ h ]  = exp h - ' ~ [ h ] =  c exp - h- '%[a[h],  a [ h ] ,  p [ h ] ;  h ]  (2.12) 

where In C is 0 (1) ,  whence 

W [ h ]  = -9l[c7[h], a [ h l  p [ h ] ;  h](l  +O(N- ' ) ) .  (2.13) 

The easiest quantity to calculate is the effective action r[p]], the generating 
functional for one p irreducible Green function. This is the Legendre transform of 
W [ h ]  with respect to cpl = SW/ah,. As an intermediate step in calculating the large-N 
limit of r[p] we introduce the generalised effective action r[c7, a, p ;  p], the Legendre 
transform of - %[g, a, p ;  h ]  with respect to 

cpl = -S%I/Sh,  = (-V2+m: +ia .tip)-'h,. 12.14) 

On inspection, it is straightforward to see that r[p] is obtained from r[a, a ,  p ;  p] by 
evaluating it at the extremum (U, a ,  p )  = (a[p], a [ p ] ,  p [ q ] )  satisfying 

(2.16) 

This follows from the fact that equations (2.16) are identical to equations (2.11) on 
making the substitution (2.14). 

The end result is that to order N 

r[v, a , p ;  p]= ddx[$(Vp)2+$(m: +ia +ip)qpZ+~N(-~aa+p2/A0)+$AN~S(0)lna] 

(2.17) 

where cr, a, p are independent auxiliary fields. The expression (2.17) becomes a little 
more transparent if we change variables from (a, a,  p )  to (a, x, p )  with 

I 
+ ihN Tr ln(-V2 + mi + ia + i p )  

x = m i  + i a  +ip (2.18) 
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whence 

r [ u , x , p ; 9 ] = j  d d ~ [ $ ( V q ) 2 + ~ ~ q 2 + N p 2 / 2 A o - $ N u ( ~ - m ~ - i p ) + ~ ~ N ~ S ( O ) l n u ]  

+$AN Tr ln(-V2+x). (2.19) 

Using this representation of the effective action we shall now show how and 
when the ultraviolet singularities due to the hard core and self-interaction can be 
renormalised. 

3. The mass gap equations 

As a first step we shall use (2.19) to derive the large-N effective potential V ( q ) ,  the 
energy density of the ground state of the theory? in which the scalar-field vector has 
expectation value q. This is obtained from r[q] by setting p constant in space-time 
and factoring out the space-time volume. On past experience, if we can renormalise 
V ( q )  we can renormalise r[cp], and hence all Green functions. Secondly, the symmetry 
of the vacuum is obtained directly from the global minimum of V ( q ) ,  which defines 
the ground state of the theory. 

N-'V(u, x, p ;  p) = ixq2/N + i p 2 / A o - i u ( x  - mi -ip) +$hPS(O) In u 

To construct V ( q )  we use (2.19) to introduce the generalised potential 

where -dk = ( 2 ~ ) ~ ~  ddk in d dimensions. 

constraints 
The effective potential V ( q )  is obtained from V ( u , x , p ; q )  by imposing the 

Using (3.3) and (3.4) to re-express p, U in terms of x we can rewrite (3.2) as 
2 x = mo +iAou+bPAS(0)/a 

= m i  + i ~ , ( q ' / ~  + ~ G ( o ,  X ) ) + P S ( O ) ( G ( O , * ) + ~ ~ / ~ N ) - '  (3.5) 

where 
e-ikx 

G(x, m 2 ) =  b k -  
k 2 + m 2  (3.6) 

is the free propagator for a scalar of mass m. 

?This is strictly true only for the Minkowski theory,(Coleman 1975). For the large-N limit above 
continuation from Euclidean to Minkowski momenta is trivial, leaving Y unchanged. 
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To interpret (3.5) we observe that the true vacuum of the large-N theory satisfies 

Let us first suppose that there is no symmetry breaking, so that cpi = 0. On evaluating 
the cp propagator from r of (2.18) we havet (in momentum space) 

o i j ( p 2 )  = Si , / (p ’+xO)  (3.8) 

where (from (3.5)) 

X O = ~  + ~ ~ A o G ( O , X O ) + P S ( O ) / G ( O , X ~ ) .  (3.9) 

If, on the other hand, there is symmetry breaking (and the vacuum has O ( N -  1) 
symmetry) x = 0 for the Goldstone mode. However, for the unbroken degrees of 
freedom, the common (mass)’ is still given by ,yo of (3.9). This equation, expressing 
the mass of the massive cp fields self-consistently in terms of the bare parameters of 
the theory, is the ‘mass gap’ equation that we shall now examine. 

For the translation-covariant canonical theory (p  = 0) equation (3.9) becomes the 
conventional large-N mass gap equation (see Coleman et a1 1974, for example), 
which is essentially a Hartree self-consistent equation (Caianiello et a1 1971) or 
mean-field equation (Bender et al 1977). It is represented diagrammatically in figure 
1, where we see that it retains only the most singular contributions. On the other 
hand, for A. = 0 and p = 1 equation (3.9) becomes the self-consistent mass-renormali- 
sation equation due to the ‘hard-core’ effects of the change in measure that we 
discussed in great detail in 111. In this case the self-consistency arises because the 
scale covariance enforces homogeneity on the branching equations of the theory. It 
is represented diagrammatically in table 1 of 111. For p # 1 individual diagrams in 
this table acquire multiplicative powers of p. We shall discuss this further in § 6. 

What we see in (3.9) is that when there is self-interaction the two contributions 
beome exactly additive if (and we would anticipate, only if) we organise the diagrams 
as in the large-N limit. 

To see the circumstances under which the gap equation (3.9) is renormalisable it 
is most convenient to regularise the Euclidean theory by imposing a momentum cut-off 
at JkJ < A ,  using the definitions ( d  dimensions) 

- O(Ad-*) .  (3.10) ~ ( O ) A  = Lkl dk = O(Ad)  G(O, xj,t = -- 

Details are given in the appendix. 

dk 
c A lkl<A k’+X 

The gap equation then takes the form 

,yo = mz + hAoO(Ad-’j + p O ( A 2 ) .  (3.11) 

In the introduction we stressed that a characteristic of our solutions should be that 
the scale-covariant formalism works where it is obligatory. For the case of the A (q’)’ 
theory that we are examining here, the scale-covariant formalism is obligatory for 
d > 4 dimensionst. 

t The second functional derivatives of T[u, y, p ;  c p ]  give the matrix of inverse propagators which, for cpi = 0, 
is diagonal in the cp sector. 
$ T h e  argument for this is independent of the calculational scheme adopted (Klauder 1979a), be it h 
expansions, 1 / N  expansions, or whatever, relying on classical inequalities. 
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o= o+m 
+ 

+ 

+ ’ . ’  

Figure 1. The Hartree-like mass gap equation for p = 0. The ‘cactus’ diagrams of the 
second line, built out of propagators G(x, m ; ) ,  have coupling strength A. at each vertex 
They should be contrasted to the non-polynomial diagrams of table 1 of 111, to which 
they are added for p # 0. 

It is just for the values d >4 that, from (3.11), we see that the ultraviolet singularities 
due to the ‘hard core’ are less singular than the singularities due to the self-interaction. 
Thus, if we can control these latter singularities, there is every likelihood that the 
hard-core effects due to the change of measure can be subsumed in them. 

We know (Rembiesa 1978) that if we ignore the change in measuret (i.e. take 
p = 0) the 1,” expansion organises the ultraviolet singularities of A ( P * ) ~  in such a 
way that the theory can be renormalised in d < 6 dimensions. This suggests that, for 
4 < d < 6 dimensions, the necessarily scale-covariant theory can be renormalised. 

On the other hand, for d < 4  dimensions the hard-core singularities are more 
singular than those due to the self-interaction. We know from IV that if A. = 0, 
renormalisation is not possible and we have no expectations for A. # 0. However, in 
this case (for which the scale-covariant theory is competing with an acceptable 
canonical theory) a positive result is less important. 

To see how this is borne out in practice, we shall now renormalise the generalised 
ga2-dependent mass gap equation (3.5) for integer-d dimensions. (We are not interested 
in E expansions in this paper.) 

t This has been the common practice in handling 1 / N  expansions for ‘non-renormalisable’ theories. Other 
authors besides Klauder have found this disputable (see for example Kerler 1977). 
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4. Renormalisation of the mass gap equation 

We now examine equation (3.5) in d space-time dimensions, using the formulae of 
the appendix. 

4.1. d > 6 dimensions 

Equation (3.5) is expressible as 

x / A o =  mt /Ao -k&9'/N +$had(,id-2 i bdhd-4X i C d h d - ' X 2  i ' - )  

+ (@hAd/ho) (h2  - bdX 4- ' - )  cd # 0. (4.1) 

The presence of the divergent term Ad-'x2 makes it impossible to renormalise (4.1). 
Since this term is associated with the self-interaction it is only for the pseudo-free 
theory ( A o  = 0) that renormalisation is possible, as was noted in IV. 

4.2. d = 6 dimensions 

We now have 

x/Ao = m ; /Ao  + &p2/N + $ha6(A4 + b d 2 X  i cbx2 In x /h2  + .) 

+ ($PAA,/Ao)(h2 - b,x + * * a ) .  (4.2) 

The presence of the x2  In h2 term again makes it impossible to renormalise (4.1) for 
A. # 0. Both this and the previous result are expected. 

4.3. d = 5 dimensions 

Equation (3.5) becomes 

(4.3) 

where we have anticipated that Ao-, 0 as A+CO. This gives 

AA3 3/3A2) +- ;'( - 1 --) 216p7r3 +2 A ( 1  - - ) x 3 / 2 .  216/3r3 
5hhoA 48Ir 5hhoA 

(4.4) 
Defining the renormalised coupling constant A and the renormalised mass m by 

1 1  AA 216p7r3 -' 
A o  241r 
- = (c(1 - ;p)  ++( 1 - -) ShAoA 

and 
-- m2 -+- mi  AA3 +-)( 3pA2 1--) 216p7r3 

A - ( A 0  7 2 r 3  5Ao 5hhoA 

equation (4.4) becomes the finite equation 

x/A = m 2 / A  + $ s 2 / N  +4hGF(0, x) 

(4.5) 

(4.6) 

(4.7) 
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where GF(0, x )  is the finite part of G(0, x ) ,  given by 

(4.8) 

Equation (4.7), with no explicit P dependence, has just the form that we would have 
obtained if we had not changed the measure (Rembiesa 1978). 

4.4. d = 4 dimensions 

In this case equation (3.5) is as in (4.3), but now taking the form 

(4.9) 16r2 h P 2 2 
x - m o + - -  ' ' ( I.-- ? + g (A2 f x  In x / A 2 )  +- (A2 - x  In x / A 2 ) .  

A0 A0 2 N hh o 2 A o  

On introducing a subtraction point at p 2  = M 2  (4.9) becomes 

= (2+ g+ E) + $ (1 - F 7  16r2 + 3 h (1 - 5 7 x  In X 

(4.10) 
Defining the renormalised coupling constant A and renormalised mass m by 

gives 

X / A  = m2/A +$''/N+$~GF(O, x )  
where GF(0, x )  is the finite part of G(0, x ) ,  now given by 

(4.11) 

(4.12) 

(4.13) 

Again, equation (6.13) is just that for the canonical theory (Coleman et a1 1974). 
We note that if we had set A. = 0 this would imply A = 0. This shows that there 

is no difficulty in renormalising the 'gap' equation for the pseudo-free theory in d = 4 
dimensions. 

4.5. d = 3 dimensions 

Equation (3 .5)  now takes the form 
2 

K=mo+- - 1 -  
A0 A0 k $( 

(4.15) 
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On inserting the formulae for the individual terms from the appendix we obtain 

-- h (1 --)x1/2+7 41r’pA 41T3p ( N) . 
87r hh 0 3Aoh 

(4.16) 

If we define the renormalised coupling constant A and the renormalised mass m by 

and 

(4.17) 

(4.18) 

we see that A. = O(A), whence (4.16) in turn can be written as 

XlA = m 2 / A  + $(p2 f N + $hGF(O, x )  (4.19) 

where GF(0, x) is the finite part of G(0, x )  

(4.20) 

We note that if we had set A. = 0 this would imply a divergent A = O(A2). It is 
thus not possible to renormalise the pseudo-free theory in d = 3 dimensions, as we 
noted in IV. The self-interaction thus seems to soften the ‘hard core’ so as to make 
it manageable. 

4.6. d = 2 dimensions 

For this last case the equation (3.5) becomes 

(4.21) 

which it is not possible to renormalise. 
The next step is to use the definitions in 0 9 4 . 3 4 5  above for A and m2,  where 

renormalisation is possible, to see whether it is possible to renormalise the whole of 
V((p), and not just the equation (3.5) that determines its extrema. Only then can we 
expect to be able to renormalise I‘[p], and hence the (p Green functions which are 
our ultimate concern. 

We conclude with a brief comment on the independent-value model (IVM) in the 
large-N limit, for which equation (3.5) becomes (p  = 1 for the IVM) 

(4.22) 

There is no way that we can make sense of (4.22) by adopting the multiplicative 
renormalisation appropriate to the IVM. It is no surprise that, in order to get a 
non-trivial behaviour for the O(N)-invariant IVM in the large-N limit, we are obliged 
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(Klauder and Narnhoffer 1976) to adopt a different explicit N dependence for A. 
from that adopted here. 

5. The renormalisation of the effective potential 

The fact that we are able to renormalise the mass gap equation (3.5) which defines 
the extrema of the generalised effective potential (3.1) does not, in itself, guarantee 
that we can renormalise (3.1) on imposing (3.3)-(3.5). However, we would be surprised 
if we could not do so and we shall show in this section how Y ( q )  can indeed be 
renormalised in d = 3 , 4 ,  5 dimensions. 

1 
- Y(u, x ; q )  = $xq2 /N - + - bk ln(kz + x )  +$phs(O) In U. (5.1) 
N 

At this stage U and x are still genuinely independent auxiliary fields. On making the 
further substitution for (T from (3.3) we can express V ( q )  as 

V ( 9 )  = Y(x(4p); q) (5 .2)  

As a first step we eliminate p from V in terms of U to give 

2 h j  - m;)  + 

where (including all terms relevant to d = 3 , 4  or 5 )  

1 
- W x ;  q) = ~ X ~ P ~ / N - $ ( P ' / N + ~ G ( O ,  x )>(x  -mg)+&Ldp2/N+hG(0, x)I2 N 

dkln(k2+x)+$~h6(0)lnG(0,~)+$~hL3(0)ln(l+ 

+- 6hZ G(0 ,  x ) ~  ( k l f ) 3 - $ h ( x - m ; ) G ( 0 , ~ ) + Q A ~ h 2 G ( 0 , ~ ) 2  N 

+$h 1 Uk In (k2+,y)+$Ph6(0)  In G(0 ,  x ) .  (5.4) 

We now use the relations of the previous section to re-express Ao, m i  in terms of the 
finite quantities A, m2.  The final renormalised V ( q )  is then obtained by imposing the 
constraint x = ~ ( q ) ,  

x(v ) /A  = m2/A + 4 q z / N + $ h G ~ ( O ,  x ( q ) )  ( 5 . 5 )  

common to all d. 

5.1. d = 5 dimensions 

From (4 .5)  and (4.6) we can re-express Ao, mg as 

(5.6) 

hA 
72T 

mg = m2( 1 - gp) -?PA2 - 7 (A2 - 3m2)Ao = O(A2). (5 .7)  
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It is a tedious but not difficult exercise to insert (5.6) and (5.7) in (5.4). Using 
the formulae of the appendix, the end result is the simple expression 

- ~ ( x ; c p ) = -  X Q2 ---+-,y+fii[Jc~kln(k~+,y)] X 2  m2 1 
N 2 N 2 A  A F 

where 

(5.8) 

This P-independent answer is the conventional translation-covariant result (Rembiesa 
1978). In particular, since the constraint equation ( 5 . 5 )  is no more than 

a?%; cp)/aX = o (5.10) 

we can simplify the calculation by taking x to be an independent auxiliary field in 
(5 .8) .  The results are given in detail in Rembiesa (1978) and we refer the reader to 
them. What interests us is that we have been able to control the ultraviolet singularities 
of the hard core for a model in which it is obligatory. 

5.2. d = 4  dimensions 

From (4.11) and (4.12) we can re-express Ao, mg in terms of A, m2. Omitting details, 
we find 

+ O((ln A2/M2) - ’ )  16.rr2P 
Ao=- 

h 
(5.11) 

and 

mi = O(A2). 

Repeating the exercise we again reproduce the simple P-independent result that 

v(,~;cp)=------+-x+fh[ XQ’  xz m 2  J dk ln(k2+x)]  
2 N  2A A F 

where 

[ J dk 1n (k2+x) lF=  Joxd,yf G d O , x ) = g ( l n s - i ) .  X Z  

(5.12) 

(5.13) 

As before, we can treat x and cp as independent variables in (5.12) reproducing the 
orthodox results for the translation-invariant theory. We refer the reader to Coleman 
(1975), Kobayashi and Kugo (1975) and Abbott et a1 (1976) for details. 

5.3. d = 3 dimensions 

The absence of p dependence in the large-N limit of the theory in d = 5 , 4  dimensions 
might seem to suggest that the effective potential is always P independent. That this 
is not so can be seen for this case. 
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As an indication of how this happens let us consider the first term in (5.4) 

(on using (3.5)). For d = 5 , 4  dimensions 

to give 
Y1(x(v); 9) = bx(v)v2/N. 

However, for d = 3 dimensions we see that 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

giving a @-dependent behaviour not present in higher dimensions. A second term 
giving a @-dependent result is the non-zero finite term @S(O)G(O, ~)-3(402/N)3 (non- 
zero for d = 3 only) in (5.4), that has no counterpart in any other term on using (5 .5 ) .  

The end result of substituting for A. and mi as given by (4.17) and (4.18) is to 
give a @-dependent ‘V(cp) of the form 

V(x(~);p)=----+-x+$h[[ X Q 2  X2 m2 bk 1n(k2+x)] 
2 N  2A A F 

where 
1 [ [ bk l n ( k 2 + ~ ) ] , =  lox dx’ GF(0, x) = - -x3’2   IT 

(5.19) 

(5.20) 

We can no longer treat x and 9 as independent in (5.19) when p # 0. No doubt the 
phase structure of the theory is p dependent. We shall not pursue this further, since 
we are not primarily interested in scale-covariant theories when they are not manda- 
tory, or on the borderline of being so (i.e. d = 4 dimensions). We are only interested 
in the result, presumably of greater generality, that the large-N limit (i.e. the approxi- 
mation that retains the most singular ultraviolet contributions) is @ dependent only 
when the (p -dependent) hard core is more singular than the self-interaction. 

As a final comment, we were worried in IV that the h@S(O) In cr term might herald 
instability. This was shown in IV not to do so for the pseudo-free theory. What we 
have shown here is that, as we anticipated in IV, the self-interacting theory is equally 
stable in the large-N limit. 

6. Measures 

Let us revert to the scale-covariant theory of a single scalar field 4p with action A of 
(1.5) and measure kdL[rp] of (1.3). For p f 0 the generating functional Z’[h]  of (1.1) 
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satisfies the subtracted equation 

where 

S P  S P  SPZ' 
' Sh (x)' ' 

For p = 1, when the measure is scale invariant, Z '  satisfies the formal unsubfracted 
equation 

However, because the independent-value model (IVM) (Klauder 1975) (in which 
the kinetic term is dropped) still has p = 1 and requires the subtraction procedure, it 
was argued in Klauder (1979a) that the subtracted equations should always be used 
and (6.3) ignored, even when p = 1. 

We saw in I1 that the branching equations for the unconnected Green functions 

S"Z'[h] 
S h ( x 1 ) .  * . S h ( x , )  

G ( x ~ x ~  . . . x , )  = (6.4) 

that follow from the subtracted equation (6.1) are incomplete. In order to obtain as 
complete a set as possible (the overall scale can never be determined) it is necessary 
to supplement them either with the analogue of renormalisation-group-like equations, 
or with additional dynamical constraints. 

For p = 1, this is indeed provided by the first equation of (6.3), (not obtainable 
from (6.1)) that 

x ' - x  lim ( - V ~ + m ~ ) G 2 ( ~ ~ ' ) + ~ A O G 4 ( ~ ~ ~ ~ )  = O .  (6.5) 

It is given diagrammatically in figure 2 of paper I of this series (Ebbutt and Rivers 
1982a). 

Retaining p = 1, we already know from I11 that if the scalar field has mass m 

lim ( -V2+m;)Gz(xx')= G(0 ,  m 2 )  ] +continuum terms. 
x ' + x  W O ,  m 2 )  (6.6) 

Similarly, we know that 

G4(xxxx) = 3G(O, m2)'+  W,+(xxxx) +continuum terms (6.7) 

where W4 is the connected four-point function. 
Let us now revert to the large-N limit of the O ( N )  theory. Two things happen. 

Firstly, the scalar field loses its continuum. Secondly, W4(xxxx) is depressed by a 
factor of N compared with the G(0 ,  m2)' term, which now becomest NG(0, m2)2 .  
Putting in the explicit N dependence of Ao,  the large-N limit of the O(N)-invariant 

t The difference in coefficients between 3 and 1 when N = 1 is the difference between the Hartree and 
mean-field approximations. 
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generalisation of equation (6.5) becomes 

O=G(O, m 2 ) [ - m 2 + m i  +S(O)/G(O, m2)+$hG(0,  m')]. (6.8) 

That is, we have rederived the gap equation (3.9). 
Thus, for p = 1, the gap equation (3.9) is just the ingredient that, when added to 

the incomplete equations (6.1), gives the complete equations (6.3). 
For 0 < p < 1 the more general gap equation (3.9) still plays the role of the missing 

ingredient. However, we are no longer able to interpret it in terms of explicit constraints 
upon Green functions, such as (6.5)t. This shows the virtue of the large-N limit (and 
with luck, the 1/N expansion) in that this missing component cannot be readily 
identified for p < 1 by any other tactics with which we are familiar. Since p is, as yet, 
unspecified we have a succinct way to parametrise the degeneracy of the subtracted 
scale-covariant equations. 

7. Conclusions 

In our discussion of the large-N limit of the O(N)-invariant scale-covariant A ( ( P ~ ) ~  
theory several pointers to the nature of the 'hard-core' effects due to the change of 
measure have appeared. 

Firstly, the fact that the ultraviolet singularities due to the hard core are additive 
to those of the self-interaction in the large-N limit enables us to use orthodox 
renormalisation techniques. 

Secondly, for the A ( v ' ) ~  theory the hard-core ultraviolet singularities are less 
singular than those of the self-interaction just for those space-time dimensions ( d  > 4) 
for which the scale-covariant theory is obligatory. It is straightforward to see that this 
is a general result. For example, if we have a A&'-"(cp')" theory the mass gap 
equation will become (x0 = m2 for (P mass m) 

2 xo = mo +AoG(O, XO)"-' +pWl)/G(O, X O ) .  

In d dimensions with a (kl< ii cut-off (7.1) has the form 
(7.1) 

xo = m t  + A ~ O ( A ( " - ' ) ( ~ - ~ )  )+P0(A2>.  (7.2) 

The 'hard core' is less singular than the self-interaction provided 

2n < 2 d / ( d  - 2)  (7.3) 

which is just the condition that the scale-covariant formalism is necessary (Klauder 
1979a). 

Thirdly, we have found that, provided the 'hard core' is not more singular than 
the self-interaction (i.e. d L 4 for A ((P')'), it can be absorbed in the self-interaction 
whenever this can be renormalised in the large-N limit. Now it happens that the 
critical dimension for scale covariance is essentially the critical dimension for the 
renormalisation of the h expansion (Klauder 1979a). Since the 1/N expansion is less 
singular than the h expansion we have a small leeway (in this case 4 < d < 6 dimensions) 
in which we have a renormalisable, necessarily scale-covariant, large-N theory. 

A particular consequence of the fact that the hard core can be absorbed in the 
self-interaction in 4 s d < 6 dimensions is that the results are independent of the 

i. Neither is it the analogue of a renormalisation-group-like equation. 
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measure chosen. That is, using the measure 9; of (1.6), we have no p dependence 
in the large-N limit. On the other hand, for d < 4  dimensions, the hard-core is more 
singular than the self-interaction. Renormalisability is not inevitable (in particular, 
the pseudo-free theory is not renormalisable), but when it is (in this case for d = 3 
dimensions), the results are p dependent. We expect this result to be generalisable. 

Fourthly, we have observed that, in order to get a sensible theory, the parameter 
p is related to the unrenormalised parameters of the theory. For example, on removing 
the ultraviolet cut-off in d = 4 dimensions, we see from (5.11) that 

= h/16.rr2 (7.4) 

provided A # 0. Such a ‘tuning’ of p is not unexpected (Klauder 1981)t. 
Finally, we have observed that the P-dependent mass gap equation is just the 

additional piece of information needed to complement the degenerate subtracted 
scale-covariant equations. 

We conclude with a cautionary note. The 1/N expansion of the canonical A (q’)’ 
theory can be pathological and insofar as the non-canonical theory presented above 
mimics the canonical theory, we may expect difficulties. An an example, the effective 
potential (5.12) for d = 4  dimensions is potentially unstable (Linde 1976) in that, 
although complex for large, we have$ (to leading order) 

Re  V(q2)  -+ -0O Im “l‘(q’)/Re “lr(p’) -* 0 as p2+ 00. (7.5) 

We stress that, so far, all our comments are applicable only to the large-N limit. 
For d = 4 dimensions, for which p independence has only been saved by logarithms, 
we have no reason to expect that non-leading orders are insensitive to the change of 
measure. 

On the other hand, for d = 5 we have a potentially much greater chance of p 
independence of non-leading orders, by virtue of the 1/N expansion ‘respecting’ the 
change of measure, as indicated in I. This is being investigated and the results will be 
given elsewhere. 

In the interim, it is perhaps best to consider the 1/N expansions as providing 
quantitative examples to more general qualitative expectations about non-canonical 
quantisation, as the (ultimately unstable) Ap3 theory proved such a useful tool in field 
theoretic analysis of the complex angular momentum plane. 

Appendix 1. Basic formulae 

A l .  1. d = 2 space-time dimensions 

t This is only half the story. In principle, the first non-leading order in the 1/N expansion can effect an 
0(1) renormalisation of #l, as can be seen in the pseudo-free theory (to be published elsewhere). The 
nature of #l renormalisation for the very different interacting theory is currently under investigation. 
t The difficulty with evaluating the arguments of orthodox instanton instability analysis is inappropriate 
away from the classical limit and tunnelling is not inevitable (Cant 1979) to leading order. 
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A1.2. d = 3 space-time dimensions 

G(0, x ) ~  = $ T - ~ ( A - $ T x ' / ~ )  (A31 
s(O)JG(O, x),,=$A2(1 - T X ' ' ~ / ~ A ) - '  = $ ( I I ~ + $ T A X ' / ~ + : T ~ X  +O(A-')) (A4) 

S(O)A/G(O, x): =$.n2A(1 - - T x ' / ~ / ~ A ) - ~  =?T~(A+X' /~+O(A- ' ) )  (A5) 

A1.4. d = 5 space-time dimensions 

G(0, x ) A  = (A3/36a3)(1 - 3x/A2 + $ T X ~ / ~ / A ~  + O w 4 ) )  

=$(A2+3x - $ T , ~ ~ / ~ / A + O ( A - ~ ) )  (-414) 

s ( O ) A / G ( O ,  x ) : =  1 0 8 ~ ~ / 5 A + O ( A - ~ )  (-415) 

(A13) 
s(O)A/G(O, ~ ) A = $ 4 ~ ( 1  - ~ x / A ~ + ~ T x ~ / ~ / A ~ + *  ' e ) - '  

dk ln(k2+,y) = (1/361r3)(A3x - $ A ~ ~ + $ r x ~ / ~ ) + c o n s t a n t .  (A16) 
I k k A  

Al.5. d 3 6 space-time dimensions 

d = 6  G(0, X ) A  = &(if4 + b6h2X -I- C 6 x 2  In x /A2  + * * *)  

G(0, x ) ~  = ad(Ad-2 + bdAd-4X + CdAd-'X2 
(A171 

d > 6  * * * )  

d 3 6  s(O)A/G(O, x ) ~  =AdA2(1 + b&'/A2 + ' ' ')-' =Ad(A2-bdX + ' ' ') 
s (O)A/G(O,  x ) :  = o ( A ~ - ~ ) .  

Unless specifically stated, logarithmic divergences are ignored in expressions O(A"). 
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